Section 1 : Calculus 2 l A-Z Calculus

Lecture 1 Getting started l Course overview l A to Z Calculus 2 1:24
Lecture 2 Integrals l Antiderivatives and indefinite integrals 5:11
Lecture 3 Integrals l Indefinite integrals l A to Z Calculus 2 6:10
Lecture 4 Integrals l Properties of integrals l A to Z Calculus 2 5:34
Lecture 5 Integrals l Find f given f'' 4:42
Lecture 6 Integrals l Find f given f''' l A complete comprehensive calculus 7:19
Lecture 7 Integrals l Initial value problems 6:54
Lecture 8 Integrals l Find f given f'' l initial conditions 8:26
Lecture 9 Integrals l Definite integrals l A to Z Calculus 2 5:7
Lecture 10 Integrals l Definite integrals l Area under or enclosed by the graph 5:55
Lecture 11 Definite integrals of even functions 5:0
Lecture 12 Integrals l Definite integrals of odd function 7:38
Lecture 13 Integrals l Riemann sums l Summation notation l finding the sum 3:47
Lecture 14 Integrals l Riemann sums l Summation notation 3:19
Lecture 15 Riemann sums l Summation notation, collapsing 5:3
Lecture 16 Riemann sums l Riemann sums l left endpoints 9:1
Lecture 17 Riemann sums l Riemann sums l right endpoints 15:15
Lecture 18 Integral l Other approximation method l Over and underestimation 10:8
Lecture 19 Other approximation methods l Limit process to find area on a,b 16:6
Lecture 20 Other approximation methods l Limit process find area on a,a 12:50
Lecture 21 Other approximation method l Trapezoidal rule 10:31
Lecture 22 Integrals l Other approximation methods l Simpson's rule 10:25
Lecture 23 Error bounds l Midpoint rule error bound 22:18
Lecture 24 Integrals l Error bounds l Simpson's rule error bound 19:35
Lecture 25 Error bounds l Trapezoidal rule error bound 20:52
Lecture 26 Fundamental theorem of calculus l Part 1 11:32
Lecture 27 Fundamental theorem of calculus l Part 2 7:26
Lecture 28 Fundamental theorem of calculus l Net change theorem 6:34
Lecture 29 U-substitution 8:4
Lecture 30 U-substitution l U substitution in definite integrals 10:36
Lecture 31 Integration by parts 7:46
Lecture 32 Integrals l Integration by part l Integration by parts two time 13:36
Lecture 33 Integration by parts l Integration by parts three times 10:31
Lecture 34 Integration by parts l Integration by parts with u substitution
Lecture 35 Integration by parts l reduction formula 7:13
Lecture 36 Integration by parts l Tabular integration 8:49
Lecture 37 Integrals l Partial fractions l Distinct linear factors 12:39
Lecture 38 Partial fractions l Distinct linear factors 8:59
Lecture 39 Integrals l Partial fractions l Distinct linear factors 8:38
Lecture 40 Partial fractions l Distinct quadratic factors 16:3
Lecture 41 Partial fraction l Distinct quadratic factor 16:5
Lecture 42 Partial fractions l Distinct quadratic factors 8:15
Lecture 43 Partial fractions l Repeated linear factors 12:37
Lecture 44 Partial fraction l Repeated quadratic factor 14:34
Lecture 45 Integrals l Partial fractions l Repeated quadratic factors 16:40
Lecture 46 Integrals l Rationalizing substitutions 12:29
Lecture 47 Partial fractions l How to factor a difficult denominator 20:22
Lecture 48 Partial fractions l Two ways to find the constants 19:28
Lecture 49 Trigonometric integral 3:10
Lecture 50 Trigonometric integrals 11:7
Lecture 51 Trigonometric integrals l sin^m cos^n, odd m 9:58
Lecture 52 Integrals l Trigonometric integrals l sin^m cos^n, odd n 11:5
Lecture 53 Trigonometric integrals l sin^m cos^n, m and n even 7:19
Lecture 54 Trigonometric integrals l tan^m sec^n, odd m 5:24
Lecture 55 Trigonometric integrals -55 l tan^m sec^n, even n 5:30
Lecture 56 Integrals l Trigonometric integrals l tan^m sec^n, even n 5:17
Lecture 57 Integrals l Trigonometric integrals l sinmx cosnx 3:37
Lecture 58 Trigonometric integrals l sinmx sinnx 4:13
Lecture 59 Integrals l Trigonometric integrals l cosmx cosnx 4:23
Lecture 60 Integrals l Hyperbolic integrals 2:36
Lecture 61 Hyperbolic integrals l Inverse hyperbolic integrals 3:53
Lecture 62 Trigonometric substitution 13:12
Lecture 63 Integrals l Trigonometric substitution with secant 13:36
Lecture 64 Trigonometric substitution with sine 12:21
Lecture 65 Trigonometric substitution with sine
Lecture 66 Integrals l Trigonometric substitution with tangent 14:48
Lecture 67 Trigonometric substitution with a tangent 21:36
Lecture 68 Trigonometric substitution l Quadratic function 14:3
Lecture 69 Improper integrals l What makes an integral improper 4:33
Lecture 70 Improper integrals l infinity 7:43
Lecture 71 Improper integrals l Case 2 l infinity,b 5:39
Lecture 72 Improper integrals l Case 3 l infinity 12:20
Lecture 73 Improper integrals l discontinuity at b 14:6
Lecture 74 Improper integrals l Case 5 l discontinuity at a 6:51
Lecture 75 Improper integrals l discontinuity between a and b 8:36
Lecture 76 Integrals l Improper integrals l Comparison theorem 11:17
Lecture 77 Applications of Integrals l Area between curves l Upper and lower curves
Lecture 78 Applications of Integrals l Area between curves l Left and right curves 7:3
Lecture 79 Application of Integral l Area between curve l Sketching area between curves 10:43
Lecture 80 Applications of Integrals l Dividing area between curves into equal parts 11:43
Lecture 81 Applications of Integrals l Arc length l Arc length curve in the form y=fx 7:42
Lecture 82 Application of Integral l Arc length l Arc length of curve in the form x=gy 11:9
Lecture 83 Applications of Integrals l Arc length l Arc length using simpson's rule 10:20
Lecture 84 Applications of Integrals l Average value l Average value 6:0
Lecture 85 Application of Integral l Average value l Mean value theorem for integrals 3:58
Lecture 86 Application of Integral l Surface area of revolution 9:35
Lecture 87 Applications of Integrals l Surface area revolution using simpson's rule 11:45
Lecture 88 Applications of Integrals l Surface of revolution equation 5:9
Lecture 89 Applications of Integrals l Volume of revolution l major axe of revolution 36:5
Lecture 90 Applications of Integrals l Volume of revolution l Disks l horizontal axis 8:46
Lecture 91 Applications of Integrals l Volume of revolution l Disks l vertical axis 9:47
Lecture 92 Applications of Integrals l Volume of revolution l Disks l vertical axis 6:25
Lecture 93 Application of Integral l Volume of revolution l Disks l volume of frustum 17:18
Lecture 94 Application of Integral l Volume of revolution l Washers l horizontal axis 10:53
Lecture 95 Application of Integral l Volume of revolution l Washers l horizontal axis 8:2
Lecture 96 Applications of Integral l Volume of revolution l Washers l vertical axis 10:20
Lecture 97 Volume of revolution l Cylindrical shells horizontal axis 11:7
Lecture 98 Volume of revolution l Cylindrical shells l vertical axis 13:25
Lecture 99 Applications of Integrals l Cylindrical shells l vertical axis 10:48
Lecture 100 Work done to lift a mass or weight 7:40
Lecture 101 Applications of Integrals l Work done on elastic springs 8:16
Lecture 102 Applications of Integrals l Work done to empty a tank 18:30
Lecture 103 Applications of Integrals l Work done by a variable force 4:9
Lecture 104 Applications of Integrals l Physics l Moments of the system 4:25
Lecture 105 Applications of Integrals l Physics l Moments of the system, x axis 2:55
Lecture 106 Applications of Integrals l Physics l Center of mass of the system 2:25
Lecture 107 Applications of Integrals l Physics l Center of mass of system, x axis 3:16
Lecture 108 Applications of Integrals l Physics l Hydrostatic pressure 4:57
Lecture 109 Applications of Integrals l Physics l Hydrostatic force
Lecture 110 Applications of Integrals l Physics-111 l Vertical motion 9:50
Lecture 111 Applications of Integrals l Physics l Rectilinear motion 5:39
Lecture 112 Applications of Integrals l Geometry l Centroids of plane regions 8:39
Lecture 113 Geometry l Centroids plane regions using simpson's rule 13:26
Lecture 114 Geometry l Area of the triangle with the given vertices 11:36
Lecture 115 Economics l Single deposit l compounded n times l future value 4:41
Lecture 116 Single deposit l compounded n times l present value 10:39
Lecture 117 Single deposit l compounded continuously l future value 2:19
Lecture 118 Integral l Single deposit l compounded continuously l present value 7:20
Lecture 119 Integrals l Income stream l compounded continuously l future value 6:17
Lecture 120 Income stream l compounded continuously l present value l Calcu 3:37
Lecture 121 Applications of Integrals l Economics l Consumer and producer surplus 7:11
Lecture 122 Applications of Integrals l Probability l Probability densit 6:46
Lecture 123 Applications of Integrals Biology l Cardiac output 8:29
Lecture 124 Applications of Integrals l Biology l Cardiac output using simpson's rule 7:51
Lecture 125 Applications of Integrals l Biology l Poiseuille's law 2:26
Lecture 126 Applications of Integrals l Biology l Theorem of pappus 12:24
Lecture 127 Polar l Parametric l Parametric curves l Eliminating the parameter 7:7
Lecture 128 Polar l Parametric l Parametric curves l Derivative of a parametric curve 2:59
Lecture 129 Polar l Parametric l Parametric curves l f parametric curve 3:53
Lecture 130 Polar l Parametric l curves l Sketching parametric curves by plotting point 5:47
Lecture 131 Polar l Parametric l parametric curves l Tangent line to the parametric curve 6:56
Lecture 132 Polar l Parametric l parametric curves l Area under a parametric curve 14:38
Lecture 133 Polar l Parametric l Area under one arc or loop of a parametric curve
Lecture 134 Polar l Parametric l parametric curves l Arc length of a parametric curve 16:22
Lecture 135 Polar l Parametric l parametric curves l Arc length l particle motion 15:46
Lecture 136 Polar l Parametric l parametric curves l Arc length l simpson's rule 9:22
Lecture 137 Polar l Parametric l Surface area of revolution of a parametric curve 8:6
Lecture 138 Polar l Parametric l Surface area of revolution of a parametric curve 12:18
Lecture 139 Polar l Parametric l Volume of revolution of parametric curve 8:42
Lecture 140 Polar l Parametric l Polar curves l Converting to polar coordinates 4:36
Lecture 141 Polar l Parametric l Polar curves l Converting rectangular equation 3:39
Lecture 142 Polar l Parametric l Polar curves l Converting polar equations 2:57
Lecture 143 Polar l Parametric l Polar curves l Distance between polar points 8:57
Lecture 144 Polar l Parametric l Polar curves l Sketching polar curves 10:41
Lecture 145 Parametric l Polar curves l Sketching polar curves from cartesian curves 6:11
Lecture 146 Parametric l Calculus with polar curves l Tangent line to the polar curve 9:48
Lecture 147 Parametric l Vertical and horizontal tangent lines to the polar curve 10:21
Lecture 148 Polar l Parametric l Calculus with polar curves 12:57
Lecture 149 Polar l Parametric l Calculus with polar curves l Area inside polar curve 6:7
Lecture 150 Polar l Parametric l Area bounded by one loop of polar curve 12:26
Lecture 151 Polar l Parametric l Calculus with polar curve l Area between polar curve 14:21
Lecture 152 Polar l Parametric l Calculus with polar curves 12:35
Lecture 153 Polar l Parametric l Calculus with polar curve l Arc length of polar curve 7:29
Lecture 154 Polar l Parametric l Arc length of a polar curve 6:43
Lecture 155 Polar l Parametric l Surface area of revolution of polar curve 7:13
Lecture 156 Sequences l Series l Listing first terms 2:52
Lecture 157 Sequences l Series l Calculating the first terms 3:36
Lecture 158 Sequences l Series l Formula for the general term 6:27
Lecture 159 Sequence l Series l Convergence of sequence 7:46
Lecture 160 Series l Limit of a convergent sequence 5:3
Lecture 161 Series l Sequences l Increasing l decreasing l not monotonic 11:33
Lecture 162 Sequences l Series l Bounded sequences 12:12
Lecture 163 Sequence l Series l Calculating the first terms of sequence of partial sums 5:1
Lecture 164 Sequences l Series l Partial sums l Sum of the sequence of partial sums 4:42
Lecture 165 Sequences l Series l Geometric series 11:39
Lecture 166 Sequences l Series l Geometric series 10:15
Lecture 167 Sequences l Series l Geometric series l Values for which series converges 5:52
Lecture 168 Sequences l Geometric series l Geometric series for repeating decimals 8:38
Lecture 169 Sequences l Convergence of a telescoping series 6:49
Lecture 170 Sequences l Telescoping series l Sum of telescoping series 9:0
Lecture 171 Sequences l Basic convergence tests l Limit vs sum of the series 5:5
Lecture 172 Sequences l Series l Basic convergence tests l Integral test 11:15
Lecture 173 Sequences l Series l Basic convergence l p series test 3:2
Lecture 174 Sequences l Series l Basic convergence tests l nth term test 8:53
Lecture 175 Sequences & Series l Comparison tests 10:33
Lecture 176 Sequences l Series l Limit comparison test 5:55
Lecture 177 Sequences l Comparison tests l Error or remainder of series 11:57
Lecture 178 Sequences l Ratio l root tests 8:32
Lecture 179 Sequence l Series l Ratio test with factorial 10:55
Lecture 180 Sequences l Series l Ratio l root tests 4:30
Lecture 181 Series l Ratio l root test l Absolute l conditional convergence 13:44
Lecture 182 Alternating series test 13:37
Lecture 183 Sequences & Series l Alternating series estimation theorem 13:6
Lecture 184 Sequences l Series l Power series representation 19:55
Lecture 185 Sequences l Power series multiplication 6:52
Lecture 186 Sequences l Series l Power series division 5:14
Lecture 187 Sequences l Series l Power series differentiation 16:32
Lecture 188 Sequences l Series l Power series l Radius of convergence 9:30
Lecture 189 Sequences l Series l Power series l Interval of convergence 16:36
Lecture 190 Sequences l Series l Power series l Estimating definite integrals 11:16
Lecture 191 Power series l Estimating indefinite integral 12:3
Lecture 192 Sequences l Series l Binomial series 27:20
Lecture 193 Sequences l Series l Taylor series 8:0
Lecture 194 Sequences l Series l Radius and interval of convergence of Taylor series 20:44
Lecture 195 Sequences l Series l Taylor series l Taylor's inequality 12:6
Lecture 196 Sequences l Series l Maclaurin series 9:0
Lecture 197 Sequences l Series l Maclaurin series 6:8
Lecture 198 Sequences l Series l Radius and interval of convergence of Maclaurin series 9:34
Lecture 199 Maclaurin series l Indefinite integral as an infinite series 8:1
Lecture 200 Maclaurin series to estimate an indefinite integral 9:39
Lecture 201 Maclaurin series to estimate definite integral 7:18
Lecture 202 Maclaurin series to evaluate a limit 5:39