#### Section 1 : Getting started

 Lecture 1 Hi! START HERE Course overview 1:24 Lecture 2 Download the Calc 2 formula sheet Text Lecture 3 The EVERYTHING download Text

#### Section 2 : . Integrals - Antiderivatives and indefinite integrals

 Lecture 4 Introduction to antiderivatives and indefinite Text Lecture 5 Antiderivatives and indefinite integrals 5:11 Lecture 6 Indefinite integrals Text Lecture 7 Indefinite integrals 6:10 Lecture 8 Properties of integrals 5:34 Lecture 9 Find f given f'' 4:42 Lecture 10 Find f given f''' 7:19 Lecture 11 Initial value problems Text Lecture 12 Initial value problems 6:54 Lecture 13 Find f given f'' and initial conditions 8:26 Lecture 14 BONUS! Extra practice problems Text

#### Section 3 : Integrals - Definite integrals

 Lecture 15 Introduction to definite integrals Text lecture 16 Definite integrals Text Lecture 17 Definite integrals 5:7 Lecture 18 Area under or enclosed by the graph 5:55 Lecture 19 Definite integrals of even and odd functions Text Lecture 20 Definite integrals of even functions 5:0 Lecture 21 Definite integrals of odd functions 7:38 Lecture 22 BONUS! Extra practice problems Text

#### Section 4 : Integrals - Riemann sums

 Lecture 23 Introduction to riemann sums Text Lecture 24 Summation notation, finding the sum 3:47 Lecture 25 Summation notation, expanding 3:19 Lecture 26 Summation notation, collapsing 5:3 Lecture 27 Riemann sums Text Lecture 28 Riemann sums, left endpoints 9:1 Lecture 29 Riemann sums, right endpoints 15:15 Lecture 30 Riemann sums, midpoints 10:21 Lecture 31 BONUS! Extra practice problems. Text

#### Section 5 : Integrals - Other approximation methods

 Lecture 32 Introduction to other approximation methods Text Lecture 33 Over and underestimation 10:8 Lecture 34 Limit process to find area on [a,b] 16:6 Lecture 35 Limit process to find area on [-a,a] 12:50 Lecture 36 Trapezoidal rule Text Lecture 37 Trapezoidal rule 10:31 Lecture 38 Simpson's rule Text Lecture 39 Simpson's rule 10:25 Lecture 40 BONUS! Extra practice problems Text

#### Section 6 : Integrals - Error bounds

 Lecture 41 Introduction to error bounds Text Lecture 42 Error bounds Text Lecture 43 Midpoint rule error bound 22:18 Lecture 44 Trapezoidal rule error bound 20:52 Lecture 45 Simpson's rule error bound 19:35 Lecture 46 BONUS! Extra practice problems Text

#### Section 7 : Integrals - Fundamental theorem of calculus

 Lecture 47 Introduction to fundamental theorem of calculu Text Lecture 48 Part 1 Text Lecture 49 Part 1 11:32 Lecture 50 Part 2 Text Lecture 51 Part 2 Lecture 52 Net change theorem 6:34 Lecture 53 BONUS! Extra practice problems. Text

#### Section 8 : Integrals - U-substitution

 Lecture 54 Introduction to u-substitution Text Lecture 55 U-substitution Text Lecture 56 U-substitution 8:4 Lecture 57 U-substitution in definite integrals Text Lecture 58 U-substitution in definite integrals 10:36 Lecture 59 BONUS! Extra practice problems Text

#### Section 9 : Integrals - Integration by parts

 Lecture 60 Introduction to integration by parts Text Lecture 61 Integration by parts Text Lecture 62 Integration by parts 7:46 Lecture 63 Integration by parts two times Text Lecture 64 Integration by parts two times 13:36 Lecture 65 Integration by parts three times 10:31 Lecture 66 Integration by parts with u-substitution 8:55 Lecture 67 Prove the reduction formula 7:13 Lecture 68 Tabular integration Text Lecture 69 Tabular integration 8:49 Lecture 70 BONUS! Extra practice problems Text

#### Section 10 : Integrals - Partial fractions

 Lecture 71 Introduction to partial fractions Text Lecture 72 Partial fractions Text Lecture 73 Distinct linear factors 12:39 Lecture 74 Distinct linear factors, example 2 8:59 Lecture 75 Distinct linear factors, example 3 8:38 Lecture 76 Distinct quadratic factors 16:3 Lecture 77 Distinct quadratic factors, example 2 16:5 Lecture 78 Distinct quadratic factors, example 3 8:15 Lecture 79 Repeated linear factors 12:37 Lecture 80 Repeated quadratic factors Lecture 81 Repeated quadratic factors, example 2 16:40 Lecture 82 Rationalizing substitutions Text Lecture 83 Rationalizing substitutions 12:29 Lecture 84 How to factor a difficult denominator 20:22 Lecture 85 Two ways to find the constants 19:28 Lecture 86 BONUS! Extra practice problems Text

#### Section 11 : Integrals - Trigonometric integrals

 Lecture 87 Introduction to trigonometric integrals Text Lecture 88 Trigonometric integrals Text Lecture 89 Trigonometric integrals 3:10 Lecture 90 Trigonometric integrals, example 2 11:7 Lecture 91 sin^m cos^n, odd m 9:58 Lecture 92 sin^m cos^n, odd n 11:5 Lecture 93 sin^m cos^n, m and n even 7:19 Lecture 94 tan^m sec^n, odd m 5:24 Lecture 95 tan^m sec^n, even n 5:30 Lecture 96 tan^m sec^n, even n, example 2 5:17 Lecture 97 sin(mx) cos(nx) 3:37 Lecture 98 sin(mx) sin(nx) 4:13 Lecture 99 cos(mx) cos(nx) 4:23 Lecture 100 BONUS! Extra practice problems Text

#### Section 12 : Integrals - Hyperbolic integrals

 Lecture 101 Introduction to hyperbolic integrals Text Lecture 102 Hyperbolic integrals Text Lecture 103 Hyperbolic integrals 2:36 Lecture 104 Inverse hyperbolic integrals Text Lecture 105 Inverse hyperbolic integrals 3:53 Lecture 106 BONUS! Extra practice problems Text

#### Section 13 : Integrals - Trigonometric substitution

 Lecture 107 Introduction to trigonometric substitution Text Lecture 108 Trigonometric substitution Text Lecture 109 Trigonometric substitution setup 13:12 Lecture 110 Trigonometric substitution with secant 13:36 Lecture 111 Trigonometric substitution with sine 12:21 Lecture 112 Trigonometric substitution with sine, example 14:48 Lecture 113 Trigonometric substitution with tangent 14:48 Lecture 114 Trigonometric substitution with tangent, exam 21:36 Lecture 115 Quadratic functions Text Lecture 116 Quadratic functions 14:3 Lecture 117 BONUS! Extra practice problems Text

#### Section 14 : Integrals - Improper integrals

 Lecture 118 Introduction to improper integrals Text Lecture 119 What makes an integral improper 4:33 Lecture 120 Improper integrals Text Lecture 121 Case 1 [a,infinity) 7:43 Lecture 122 Case 2 (-infinity,b] 5:39 Lecture 123 Case 3 (-infinity,infinity) 12:20 Lecture 124 Case 4 (discontinuity at b) 14:6 Lecture 125 Case 5 (discontinuity at a) 6:51 Lecture 126 Case 6 (discontinuity between a and b) 8:36 Lecture 127 Comparison theorem Text Lecture 128 Comparison theorem 11:17 Lecture 129 BONUS! Extra practice problems Text

#### Section 15 : Integrals - Reduction formulas

 Lecture 130 Introduction to reduction formulas Text Lecture 131 Integrals using reduction formulas 7:13 Lecture 132 BONUS! Extra practice problems. Text

#### Section 16 : Applications of Integrals - Area between curves

 Lecture 133 Introduction to area between curves Text Lecture 134 Area between curves Text Lecture 135 Upper and lower curves 10:29 Lecture 136 Left and right curves 7:3 Lecture 137 Sketching the area between curves 10:43 Lecture 138 Dividing the area between curves into equal p 11:43 Lecture 139 BONUS! Extra practice problems Text

#### Section 17 : Applications of Integrals - Arc length

 Lecture 140 Introduction to arc length Text Lecture 141 Arc length Text Lecture 142 Arc length of a curve in the form y=f(x) 7:42 Lecture 143 Arc length of a curve in the form x=g(y) 11:9 Lecture 144 Arc length using simpson's rule 10:20 Lecture 145 BONUS! Extra practice problems Text

#### Section 18 : Applications of Integrals - Average value

 Lecture 146 Introduction to average value Text Lecture 147 Average value Text Lecture 148 Average value 6:0 Lecture 149 Mean value theorem for integrals Text Lecture 150 Mean value theorem for integrals 3:58 Lecture 151 BONUS! Extra practice problems Text

#### Section 19 : Applications of Integrals - Surface area of revolution

 Lecture 152 Introduction to surface area of revolution Text Lecture 153 Surface area of revolution Text Lecture 154 Surface area of revolution 9:35 Lecture 155 Surface area of revolution using simpson's 11:45 Lecture 156 Surface of revolution equation 5:9 Lecture 157 BONUS! Extra practice problems Text

#### Section 20 : Applications of Integrals - Volume of revolution

 Lecture 158 Introduction to volume of revolution Text Lecture 159 Volume of revolution, major axes of revolutio Lecture 160 Disks Text Lecture 161 Disks, horizontal axis 8:46 Lecture 162 Disks, vertical axis 9:47 Lecture 163 Disks, vertical axis, example 2 6:25 Lecture 164 Disks, volume of the frustum 17:18 Lecture 165 Washers Text Lecture 166 Washers, horizontal axis 10:53 Lecture 167 Washers, horizontal axis, example 2. 8:2 Lecture 168 Washers, vertical axis 10:20 Lecture 169 Cylindrical shells Text Lecture 170 Cylindrical shells, horizontal axis 11:7 Lecture 171 Cylindrical shells, vertical axis 13:25 Lecture 172 Cylindrical shells, vertical axis, example 2 10:48 Lecture 173 BONUS! Extra practice problems. Text

#### Section 21 : Applications of Integrals - Work

 Lecture 174 Introduction to work Text Lecture 175 Work done to lift a mass or weight Text Lecture 176 Work done to lift a mass or weight 7:40 Lecture 177 Work done on elastic springs Text Lecture 178 Work done on elastic springs 8:16 Lecture 179 Work done to empty a tank Text Lecture 180 Work done to empty a tank 18:30 Lecture 181 Work done by a variable force Text Lecture 182 Work done by a variable force 4:9 Lecture 183 BONUS! Extra practice problems. Text

#### Section 22 : Applications of Integrals - Physics

 Lecture 184 Introduction to physics Text Lecture 185 Moments and center of mass of the system Text Lecture 186 Moments of the system 4:25 Lecture 187 Moments of the system, x-axis 2:55 Lecture 188 Center of mass of the system 2:25 Lecture 189 Center of mass of the system, x-axis 3:16 Lecture 190 Hydrostatic pressure and force Text Lecture 191 Hydrostatic pressure 4:57 Lecture 192 Hydrostatic force 10:19 Lecture 193 Vertical motion Text Lecture 194 Vertical motion 9:50 Lecture 195 Rectilinear motion Text Lecture 196 Rectilinear motion 5:39 Lecture 197 BONUS! Extra practice problems Text

#### Section 23 : Applications of Integrals - Geometry

 Lecture 198 Introduction to geometry Text Lecture 199 Centroids of plane regions Text Lecture 200 Centroids of plane regions 8:39 Lecture 201 Centroids of plane regions using simpson's 13:26 Lecture 202 Area of the triangle with the given vertices. 11:36 Lecture 203 BONUS! Extra practice problems. Text

#### Section 24 : Applications of Integrals - Economics

 Lecture 204 Introduction to economics Text Lecture 205 Present and future value Text Lecture 206 Single deposit, compounded n times, future 4:41 Lecture 207 Single deposit, compounded n times, present 10:39 Lecture 208 Single deposit, compounded continuously, 2:19 Lecture 209 Single deposit, compounded continuously, Lecture 210 Income stream, compounded continuously, 6:17 Lecture 211 Income stream, compounded continuously, 3:37 Lecture 212 Consumer and producer surplus Text Lecture 213 Consumer and producer surplus 7:11 Lecture 214 BONUS! Extra practice problems Text

#### Section 25 : Applications of Integrals - Probability

 Lecture 215 Introduction to probability Text Lecture 216 Probability density Text Lecture 217 Probability density 6:46 Lecture 218 BONUS! Extra practice problems. Text

#### Section 26 : Applications of Integrals - Biology

 Lecture 219 Introduction to biology Text Lecture 220 Cardiac output 8:29 Lecture 221 Cardiac output using simpson's rule 7:51 Lecture 222 Poiseuille's law 2:26 Lecture 223 Theorem of pappus Text Lecture 224 Theorem of pappus 12:24 Lecture 225 BONUS! Extra practice problems Text

#### Section 27 : Polar & Parametric - Parametric curves

 Lecture 226 Introduction to parametric curves Text Lecture 227 Eliminating the parameter Text Lecture 228 Eliminating the parameter 7:7 Lecture 229 Derivative of a parametric curve Text Lecture 230 Derivative of a parametric curve 2:59 Lecture 231 Second derivative of a parametric curve Text Lecture 232 Second derivative of a parametric curve 3:53 Lecture 233 Sketching parametric curves by plotting point Text Lecture 234 Sketching parametric curves by plotting point Lecture 235 BONUS! Extra practice problems Text

#### Section 28 : Polar & Parametric - Calculus with parametric curves

 Lecture 236 Introduction to calculus with parametric curv Text Lecture 237 Tangent line to the parametric curve Text Lecture 238 Tangent line to the parametric curve 6:56 Lecture 239 Area under a parametric curve Text Lecture 240 Area under a parametric curve 14:38 Lecture 241 Area under one arc or loop of a parametric cu Text Lecture 242 Area under one arc or loop of a parametric cu 6:53 Lecture 243 Arc length of a parametric curve Text Lecture 244 Arc length of a parametric curve 16:22 Lecture 245 Arc length, particle motion 15:46 Lecture 246 Arc length, simpson's rule 9:22 Lecture 247 Surface area of revolution of a parametric cu Text Lecture 248 Surface area of revolution of a parametric 8:6 Lecture 249 Surface area of revolution of a parametric cu Text Lecture 250 Surface area of revolution of a parametric 12:18 Lecture 251 Volume of revolution of a parametric curve Text Lecture 252 Volume of revolution of a parametric curve 8:42 Lecture 253 Extra practice problems. Text

#### Section 29 : Polar & Parametric - Polar curves

 Lecture 254 Introduction to polar curves Text Lecture 255 Converting to polar coordinates Text Lecture 256 Converting to polar coordinates 4:36 Lecture 257 Converting rectangular equations Pdf Lecture 258 Converting rectangular equations 3:39 Lecture 259 Converting polar equations Text Lecture 260 Converting polar equations 2:57 Lecture 261 Distance between polar points Text Lecture 262 Distance between polar points 8:57 Lecture 263 Sketching polar curves Text Lecture 264 Sketching polar curves 10:41 Lecture 265 Sketching polar curves from cartesian curves. 6:11 Lecture 266 BONUS! Extra practice problems. Text

#### Section 30 : Polar & Parametric - Calculus with polar curves

 Lecture 267 Introduction to calculus with polar curves Text Lecture 268 Tangent line to the polar curve Text Lecture 269 Tangent line to the polar curve 9:48 Lecture 270 Vertical and horizontal tangent lines to the Text Lecture 271 Vertical and horizontal tangent lines to the 10:21 Lecture 272 Intersection of polar curves Text Lecture 273 Intersection of polar curves 12:57 Lecture 274 Area inside a polar curve Text Lecture 275 Area inside a polar curve 6:7 Lecture 276 Area bounded by one loop of a polar curve Text Lecture 277 Area bounded by one loop of a polar curve 12:26 Lecture 278 Area between polar curves Text Lecture 279 Area between polar curves 14:21 Lecture 280 Area inside both polar curves Text Lecture 281 Area inside both polar curves 12:35 Lecture 282 Arc length of a polar curve Text Lecture 283 Arc length of a polar curve 7:29 Lecture 284 Arc length of a polar curve, example 2 6:43 Lecture 285 Surface area of revolution of a polar curve Text Lecture 286 Surface area of revolution of a polar curve 7:13 Lecture 287 BONUS! Extra practice problems. Text

#### Section 31 : Sequences & Series - Sequences

 Lecture 288 Introduction to sequences Text Lecture 289 Sequences vs. series Text Lecture 290 Listing the first terms 2:52 Lecture 291 Calculating the first terms 3:36 Lecture 292 Formula for the general term Text Lecture 293 Formula for the general term 6:27 Lecture 294 Convergence of a sequence Text Lecture 295 Convergence of a sequence 7:46 Lecture 296 Limit of a convergent sequence Text Lecture 297 Limit of a convergent sequence 5:3 Lecture 298 Increasing, decreasing, and not monotonic Text Lecture 299 Increasing, decreasing, and not monotonic 11:33 Lecture 300 Bounded sequences Text Lecture 301 Bounded sequences 12:12 Lecture 302 BONUS! Extra practice problems. Text

#### Section 32 : Sequences & Series - Partial sums

 Lecture 303 Introduction to partial sums Text Lecture 304 Calculating the first terms of a sequence of 5:1 Lecture 305 Sum of the sequence of partial sums Text Lecture 306 Sum of the sequence of partial sums 4:42 Lecture 307 BONUS! Extra practice problems. Text

#### Section 33 : Sequences & Series - Geometric series

 Lecture 308 Introduction to geometric series Text Lecture 309 Geometric series test Text Lecture 310 Geometric series test 11:39 Lecture 311 Sum of the geometric series Text Lecture 312 Sum of the geometric series 10:15 Lecture 313 Values for which the series converges 5:52 Lecture 314 Geometric series for repeating decimals Text Lecture 315 Geometric series for repeating decimals 8:38 Lecture 316 BONUS! Extra practice problems. Text

#### Section 34 : Sequences & Series - Telescoping series

 Lecture 317 Introduction to telescoping series Text Lecture 318 Convergence of a telescoping series Text Lecture 319 Convergence of a telescoping series 6:49 Lecture 320 Sum of a telescoping series Text Lecture 321 Sum of a telescoping series 9:0 Lecture 322 BONUS! Extra practice problems Text

#### Section 35 : Sequences & Series - Basic convergence tests

 Lecture 323 Introduction to basic convergence tests Text Lecture 324 Recognizing types of series Text Lecture 325 Limit vs. sum of the series Text Lecture 326 Limit vs. sum of the series 5:5 Lecture 327 Integral test Text Lecture 328 Integral test 11:15 Lecture 329 p-series test Text Lecture 330 p-series test 3:2 Lecture 331 nth term test Text Lecture 332 nth term test 8:53 Lecture 333 BONUS! Extra practice problems Text

#### Section 36 : Sequences & Series - Comparison tests

 Lecture 334 Introduction to comparison tests Text Lecture 335 Comparison test Text Lecture 336 Comparison test 10:33 Lecture 337 Limit comparison test Text Lecture 338 Limit comparison test 5:55 Lecture 339 Error or remainder of a series Text Lecture 340 Error or remainder of a series 11:57 Lecture 341 BONUS! Extra practice problems. Text

#### Section 37 : Sequences & Series - Ratio and root tests

 Lecture 342 Introduction to ratio and root tests Text Lecture 343 Ratio test Text Lecture 344 Ratio test 8:32 Lecture 345 Ratio test with factorials 10:55 Lecture 346 Root test Text Lecture 347 Root test 4:30 Lecture 348 Absolute and conditional convergence Text Lecture 349 Absolute and conditional convergence 13:44 Lecture 350 BONUS! Extra practice problems. Text

#### Section 38 : Sequences & Series - Alternating series test

 Lecture 351 Introduction to alternating series test Text Lecture 352 Alternating series test Text Lecture 353 Alternating series test 13:37 Lecture 354 Alternating series estimation theorem Text Lecture 355 Alternating series estimation theorem 13:6 Lecture 356 BONUS! Extra practice problems. Text

#### Section 39 : Sequences & Series - Power series

 Lecture 357 Introduction to power series Text Lecture 358 Power series representation Text Lecture 359 Power series representation 19:55 Lecture 360 Power series multiplication Text Lecture 361 Power series multiplication 6:52 Lecture 362 Power series division Text Lecture 363 Power series division 5:14 Lecture 364 Power series differentiation Text Lecture 365 Power series differentiation 16:32 Lecture 366 Radius and interval of convergence Text Lecture 367 Radius of convergence 9:30 Lecture 368 Interval of convergence 16:36 Lecture 369 Estimating definite integrals Text Lecture 370 Estimating definite integrals 11:16 Lecture 371 Estimating indefinite integrals Text Lecture 372 Estimating indefinite integrals 12:3 Lecture 373 Binomial series Text Lecture 374 Binomial series 27:20 Lecture 375 BONUS! Extra practice problems. Text

#### Section 40 : Sequences & Series - Taylor series

 Lecture 376 Introduction to Taylor series Text Lecture 377 Taylor series Text Lecture 378 Taylor series 8:0 Lecture 379 Radius and interval of convergence of a Taylor ser Text Lecture 380 Radius and interval of convergence of a Taylo 20:44 Lecture 381 Taylor's inequality Text Lecture 382 Taylor's inequality 12:6 Lecture 383 BONUS! Extra practice problems. Text

#### Section 41 : Sequences & Series - Maclaurin series

 Lecture 384 Introduction to Maclaurin series Text Lecture 385 Maclaurin series Text Lecture 386 Maclaurin series.mp4 9:0 Lecture 387 Sum of the Maclaurin series Text Lecture 388 Sum of the Maclaurin series.mp4 6:8 Lecture 389 Radius and interval of convergence of a Maclaurin Text Lecture 390 Radius and interval of convergence of a Maclaurin 9:34 Lecture 391 Indefinite integral as an infinite series.mp4 8:1 Lecture 392 Maclaurin series to estimate an indefinite integra 9:39 Lecture 393 Maclaurin series to estimate a definite integral.m 7:18 Lecture 394 Maclaurin series to evaluate a limit.mp4 5:39 Lecture 395 BONUS! Extra practice problems. Text

#### Section 42 : inal exam and wrap-up

 Lecture 396 Practice final exam #1 Text Lecture 397 Practice final exam #2 Text Lecture 398 Calculus 2 final exam Text Lecture 399 Wrap-up 0:25